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Abstract 
 

In this paper we will explicit the complex system and adaptive nature of behaviour. The complex 
system nature of behaviour derives from the fact that behaviour and behavioural properties are 
phenomena that occur at a given time scale and result from several non-linear interactions occur-
ring at a smaller time scale. Interactions occur in time (i.e. consists of a sequence events in which 
future interactions are constrained by preceding interactions) and might eventually consists of a 
vector of concurrent interactions. Moreover we argued that behaviour might involve several 
emergent dynamical processes, hierarchically organized, that affect each others bottom-up and 
top-down. The adaptive system nature of behaviour derives from the fact that, due to the very indi-
rect relationship between the properties of the interacting elements and the emergent results of the 
interactions, behavioural systems can hardly be designed while can be effectively synthesized on 
the basis of a self-organization process (in which properties emerging from interactions can be 
discovered and retained through an adaptive process based on exploration and selection). These 
two claims will be demonstrated in two concrete examples involving mobile robots in which non-
trivial individual and collective behaviour have been synthesized through an evolutionary tech-
nique. 

 
 
 
1. Introduction 
 
A new research paradigm, that has been called Embodied Cognitive Science (Varela, Rosch, 
and Thompson, 1991; Brooks, 1991; Clark, 1997; Pfeifer and Scheier, 1999), has recently 
challenged the traditional view according to which intelligence is an abstract process that can 
be studied without taking into consideration the physical aspects of natural systems. In this 
new paradigm, researchers tend to stress (1) situatedness, i.e., the importance of studying sys-
tems that are situated in an environment (Brooks, 1991,  Clark, 1997), (2) embodiment, i.e., 
the importance of study systems that have bodies, receive input from their sensors and pro-
duce motor actions as output (Brooks, 1991; Clark, 1997), and (3) emergence, i.e. the impor-
tance of viewing behaviour and intelligence as the emergent result of fine-grained interac-
tions1 between the control system of an agent including its constituents parts, the body struc-
ture, and the environment. An important consequence of this view is that the agent and the 
environment constitutes a single system, i.e. the two aspects are so intimately connected that a 

                                                 
1 By fine-grained interactions we means interactions that occur at small time scales (e.g. at the time scale of mil-
liseconds). 

 1



description of each of them in isolation does not make much sense (Marturana and Varela, 
1980, 1987; Beer, 1995). 

In section 1 we clarify why behaviour is a complex adaptive system and we discuss how 
behavioural systems can be developed. After discussing the advantages of self-organizing 
over design methods, we present two concrete example of effective and robust behavioural 
system developed through a self-organizing method based on artificial evolution. The first 
example concerns the development of the control system for an artificial finger that should be 
able to discriminate objects’ shape on the basis of tactile information (section 2). The second 
example involve the development of the control system of a group of physically assembled 
robots that should produce coordinated behaviours (section 3). In section 4, we point the hier-
archical organization of behaviour. Finally, in section 5, we draw our conclusions. 
 
1.1 Behaviour as a dynamical process resulting from sequences of fine-grained interac-
tions 
 
Behaviour is a dynamical process resulting from the non-linear interactions between an agent 
(natural or artificial), its body, and the external environment (including the social environ-
ment). As we will see, this implies that behavioural systems (such us mobile robots): (1) are 
extremely difficult to design from the perspective of an external observer, and (2) can be ef-
fectively developed through self-organizing methods (e.g. evolutionary methods) that allow to 
discover and retain useful behavioural properties emerging from the interactions between 
agents, their bodies, and the environment. 
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Figure 1. Individual behaviour results from fine-grained non-linear interaction between the agent’s control sys-
tem, its body, and the environment.  
 
At any time step, the environmental structure and the agent/environmental relation influence 
the body and the motor reaction of the agent that in turn influences the next environmental 
structure and/or the agent/environmental relation (see Figure 1). Sequences of these form of 
fine-grained interactions lead to a dynamical process – the behaviour – in which the contribu-
tions of the different aspects (i.e. the agent, the body, and the environment) cannot be sepa-
rated. This implies that even a complete knowledge of the elements governing the interactions 
provides little insights on the behaviour emerging2 from the interactions (Maturana & Varela, 
                                                 
2 We will use the term ‘emergence’ to indicate a property resulting from a sequence of interactions that can 
hardly be predicted or inferred from an external observer even on the basis of a complete knowledge of the in-
teracting elements and of the rules governing the interactions. 
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1980, 1988). The relation between the interaction rules and the resulting behavior is further 
complicated by the fact that, when interactions are nonlinear, small variations at the levels of 
the rules governing the interactions might translate to very different forms of behavior due to 
cumulative and amplifying effects. 
 
1.2 On the advantages of self-organizing over design techniques 
 
From a theoretical point of view, the complex adaptive system nature of behaviour has several 
important consequences that are far from being fully understood. One important aspect, for 
instance, is the fact that motor actions partially determine the sensory pattern that agents re-
ceive from the environment. By coordinating sensory and motor processes organisms can se-
lect favourable sensory patterns and thus enhance their ability to achieve their adaptive goals 
(Nolfi, 2002, in press; Nolfi & Marocco, 2002; Beer, 2003).  

From a engineering point of view, the complex adaptive system nature of behaviour ex-
plains why methods based on explicit design are inadequate for developing behavioural sys-
tems and why self-organizing methods (e.g. methods based on evolutionary techniques) might 
be appropriate instead. 

The inadequacy of design methods lay on the fact that they require from the designer an 
ability to infer the rules governing the interactions between the agent and the environment 
that will lead to a desired behaviour. Unfortunately, as we pointed out above, the properties of 
the behaviour that emerges from a sequence of fine grained non-linear interactions between 
the agent and the environment can hardly be inferred from the structure of the interacting ele-
ments and the rules governing the interactions. The inverse problem faced by the designer 
(i.e. the problem of determining the rules governing the interaction that will lead to a desired 
behaviour) is at least equally hard. 

The advantage of self-organizing methods is indeed the fact that they do not require to 
identify the relation between the rules governing the interactions and the resulting behaviour. 
They are based on an evolutionary and/or learning process in which the rules governing the 
interactions, initially randomly assigned, are progressively modified through a process of ran-
dom variation and selection. Algorithms with this property include evolutionary, simulator 
annealing, and reinforcement learning algorithms when: (a) the rules governing the interac-
tion are encoded in free parameters, and (b) variations of free parameters are retained or dis-
carded on the basis of variation of performance observed at the behavioural level (i.e. at the 
time scale of seconds or more). These characteristics allow these methods to discover and re-
tain useful properties emerging from the several interactions without the need to identify the 
relation between the rules governing the interaction (and/or the interacting elements) and the 
resulting behaviour.  

The possibility to discover and retain useful properties emerging from the interactions 
also allow self-organizing methods to come up with solutions that are simple from the point 
of view of the interaction rules (for examples, see Nolfi 2002, in press). Indeed, while in de-
sign methods the effects of the detailed characteristics of the agent and the environment (i.e. 
inertia, elasticity of materials, detailed characteristics of the shape etc.) cannot be predicted 
and thus constitute problems to be avoided, in self-organizing methods they constitute possi-
bilities to be exploited.   

Two example of how self-organizing methods might be used to develop effective behav-
ioural system and to exploit properties emerging from the interactions will be presented in 
section 2 and 3. 
 
1.3 Collective behaviour emerge from a large number of interactions 
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Collective behaviour is a dynamical process resulting not only from the fine-grained interac-
tions between agents, their bodies, and the external environment but also between agents (see 
Figure 2).  
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Figure 2. Collective behaviour results from a sequence of several concurrent interactions occurring between 
agents, their body, and the environment and between agents. The figure schematically represents the situation of 
four agents in which each individual interacts with two adjacent individuals directly (through physical contact) 
and indirectly (through environmental modifications that affect other agents’ sensors).  
 
The fact that collective behaviour results from a much larger number of fine-grained interac-
tions implies that the relation between the rules governing the interactions and the resulting 
behaviour is more indirect and more difficult to infer than in the case of individual behaviour. 
In fact, (a) individual behaviour might be hard to infer or predict on the basis of the rules gov-
erning the interactions between the agents, their body, and the external environment (see pre-
vious section), (b) groups’ aggregate-level behaviour might be hard to infer or predict on the 
basis of individual behaviours, and (c) the effects of group level dynamics on individual be-
haviour might be hard to infer or predict. For these reasons, the problem of designing the in-
teraction rules that lead to a desired collective behaviour might be extremely hard even in 
simple cases (Baldassarre, Nolfi & Parisi, 1993; Funes, Orne & Bonabeau, 2003). 

As we mentioned above, however, the indirect relation between the rules governing the 
interactions and the resulting collective behaviour does not constitute a problem for self-
organizing methods. On the contrary the large number of interactions might increase the pos-
sibility to identify parsimonious solutions (from the point of view of the complexity of the 
rules governing the interactions) by exploiting useful behavioural properties emerging from 
the interactions.  

An example of how self-organizing methods might be used to develop effective and ro-
bust collective behaviours will be presented in section 3.  
 
2. Evolving the control system of an artificial finger able to discriminate ob-
jects with different shapes on the basis of tactile information. 
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Consider the case of a robot with an artificial finger that has to discriminate objects with dif-
ferent shapes on the basis of rather rough tactile information (Nolfi and Marocco, 2002).  
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Figure 3. Left: The artificial finger and a spherical object. Right: A schematic representation of the finger. 
 

The artificial finger consists of 3-segments with 6 degrees of freedom (DOF) and coarse touch 
sensors (see Figure 3, left). More precisely, the artificial finger consists of a basic structure of 
two bodies and two joints replicated for three times (see Figure 3, right). These two bodies are 
connected by means of a joint (i.e. the Joint E in Figure 3, right) that allows only one DOF on 
axis Y , while the shorter body is connected at the floor, or at the longer body, by means of a 
joint (i.e. the Joint R) that provides one DOF on axis X. In practice, the Joint E allows to ele-
vate and to lower the connected segments and the Joint R allows to rotate them in both direc-
tion. Joint E and Joint R are free to moves only in a range between [0 and π/2] and [-π/2, 
+π/2], respectively. Each actuator is provided with a corresponding motor that can apply a 
varying force. Therefore, to reach every position in the environment the control system has to 
appropriately control several joints and to deal with the constraints due to gravity (collisions 
and physical dynamics was carefully simulated on the basis of VortexTM libraries).    

The sensory system consists of three simple contact sensors placed on each longer body 
that detect when these bodies collides with obstacles or other bodies and six proprioceptive 
sensors that provide the current position of each joint. The motor system consists of six mo-
tors controlling the corresponding six DOF.  

The controller of each individual consists of a neural network with 10 sensory neurons 
directly connected to 7 motor neurons and 2 internal neurons receiving connections from the 
sensory neurons and from themselves and projecting connections to the motor neurons. The 
first 9 sensory neurons encode the angular position (normalized between 0.0 and 1.0) of the 6 
DOF of the joints and the state of the three contact sensors located in the three corresponding 
segments of the finger. The last sensory neuron is a copy of the last motor neuron that en-
codes the current classification produced by the individual (see below). The first 6 motor neu-
rons control the actuators of the 6 corresponding joints. The output of the neurons is normal-
ized between [0, +π/2] and [-π/2, +π/2] in the case of elevation and rotational joints respec-
tively and is used to encode the desired position of the corresponding joint. The motor is acti-
vated so to apply a force proportional to the difference between the current and the desired 
position of the joint. The seventh motor neuron encodes the categorization output (value be-
low or above 0.5 are interpreted as classifications corresponding to a cubic or spherical object 
respectively).  

The connection weights of the neural controllers were evolved. An initial population of 
different artificial genotype, each encoding the connection weights of a corresponding neural 
controller, is created randomly. Each connection weight was represented in the genotype by 
eight bits that were transformed into a number in the interval [–10, +10]. Each robotic finger 
is then allowed to interact with the environment on the basis of a corresponding, genetically 
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specified, neural controller. The fittest robots are allowed to reproduce by generating copies 
of their genotypes with the addition of changes (random mutations). This process is repeated 
for a number of generations.  

Evolving individuals were allowed to "live" for 36 epochs, each epoch consisting of 150 
actions. At the beginning of each epoch the finger is fully extended and a spherical or a cubic 
object is placed in a random selected position in front of the finger (the position of the object 
is randomly selected between the following intervals: 20.0 >= X <= 30.0; 7.5 >= Y <= 17.5; -
10.0 >= Z <= 10.0). The object is a sphere (15 units in diameter) during even epochs and a 
cube (15 units in side) during odd epochs so that each individual has to discriminate the same 
number of spherical and cubic objects during its “lifetime”  Fitness is computed by counting 
the number or epochs in which individuals correctly categorize the object (i.e. the number of 
times in which at the end of the epoch  the activation of the last motor units is below 0.5 and 
the object is a cube or is above 0.5 and the object is a sphere). Therefore, individuals are free 
to determine how to interact with the objects, i.e. the are only selected on the basis of the abil-
ity to correct categorizations.  

Population size was 100. The best 20 individuals of each generation were allowed to re-
produce by generating 5 copies of their genotype with 1% of their bits replaced with a new 
randomly selected value. 

By running 10 replications of the experiment and by evolving individuals for 50 genera-
tions we observed that in many of the replications evolved individuals display a good ability 
to categorize objects and, in some cases, produce close to optimal performance. Figure 4 
shows how a typical evolved individual behave with a spherical and a cubic object (left and 
right sides of the Figure, respectively). As can be seen, first the finger bends on the left side 
and move to the right so to start to feel the object with the touch sensor of the third segment. 
Then the finger continues to move on the same direction by slightly moving up when the third 
segment of the finger touches the object. As a result of this simple motor rules, in the case of 
spherical objects, the finger keeps moving toward the left side following the curvilinear sur-
face. In the case of cubic objects, instead, it remains stuck in one of the angles by moving 
back and fourth.  

The behaviour emerging from the interactions between the finger and the objects lead to 
two rather different behavioural outcomes in the case of spherical and cubic objects: (a) a 
fully extended position of the finger in the case of spherical objects, and (b) a fully bended 
position of the finger, in the case of cubic objects.  These two positions, in turn, provide a 
straightforward indication of the type of object the finger interacted with. For other example, 
involving different environment and robots with different morphologies, in which the conver-
gence or the luck of convergence on a limit cycle behaviour can be used to categorize the en-
vironment, see Nolfi, 2002, in press; Nolfi and Marocco, 2002) 
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Figure 4. Behaviour of a typical evolved individual during an epoch (150 cycles) in which the object consists of 
a sphere (left pictures) and of a cube (right pictures). For reason of space, the pictures show the position of the 
finger each 15 cycles. 
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Individuals of other replications of the experiments display similar behaviour although the 
length of the phase with which individuals interact with spherical objects before leaving them 
varies. The fact that the best performance are observed in cases in which the interaction phase 
lasts longer (result not shown), demonstrates that the discrimination process is not the result 
of a single decision but rather the end result of a sequence of interactions between the finger 
and the object. A similar temporally-extended decision process has been observed by Beer 
(2003) in evolved agents asked to catch diamonds-shaped objects and avoid circular objects. 
 
3. Evolving the control system of a collection of physically assembled robots 
able to display coordinated collective behaviour 
 
Consider the case of four assembled robots forming a linear structure (Figure 5) that should 
move and reach a light target (Baldassarre, Parisi & Nolfi, in press). Given that the orienta-
tions of individual robots might vary and given that the target might be out of sight, robots 
should be able to coordinate to choose a common direction of movement and to change their 
direction as soon as one or few robots start to detect a light gradient. 
 

   
 
Figure 5. Left: Four robots assembled into a linear structure. Right: A simplified simulation of the robots de-
scribed in the left part of the figure based on VortexTM libraries. 
 
Each robot (Mondada et al., 2004) consists of a mobile base (chassis) and a main body  (tur-
ret) with a diameter of 116 mm that can rotates with respect to the chassis along the vertical 
axis. The chassis has two drive mechanisms that control the two corresponding tracks and 
teethed wheels. The turret has one rigid and one flexible gripper, that allow robots to assem-
ble together and to grasp objects, and a motor controlling the rotation of the turret with re-
spect to the chassis. Robots are provided with a traction sensor, placed at the turret-chassis 
junction, that detects the intensity and the direction of the force of traction that the turret ex-
erts on the chassis (along the plane orthogonal to the vertical axis) and light sensors. The ro-
bots also have several other sensors (a sound sensors, an omnidirectional camera, accelerome-
ters etc.) that, however, were not used in the experiments reported below. 

Robots’ controller only have access to local sensory information. In particular, each ro-
bot’s controller consists of a neural network with nine sensory neurons directly connected to 
two motor neurons. The first four sensory neurons encoded the intensity of the traction from 
four different orientations with respect to the chassis (rear, left, front and right). The next four 
sensory neurons provide information on the light gradient with respect to the chassis. The last 
neuron consists of a bias unit that is always activated to 1.0.  The activation state of the two 
motor neurons was normalized within [–5, +5] rad/s and was used to set the desired speed of 
the two corresponding wheels and of motor controlling the degree of freedom between the 
turret and the chassis. 
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By evolving the connection weights of the robots’ controller and by selecting the team of 
four robots on the basis of the distance travelled from its initial position (when the light target 
was not on sight) and for the distance travelled toward the target light (when the light target 
was on sight) we observed that evolving individual are able to effectively solve their problem 
by negotiating a common direction of movement and by collectively moving toward the light 
as soon as a light gradient can be detected.  

The initial population consisted of 100 randomly generated genotypes that encoded the 
connection weights of 100 corresponding neural controllers. Each connection weight was rep-
resented in the genotype by eight bits that were transformed into a number in the interval [–
10, +10]. Each genotype encoded the connection weights of a corresponding neural control-
lers that was then duplicated four times and embodied into the four robots forming the team 
(i.e. the team is homogeneous). 

By testing evolved controllers in different conditions we surprisingly observed that they 
are able to generalize their abilities in new conditions and also to spontaneously produce new 
unexpected behaviours. More precisely, evolved robots display a capacity to generalize their 
abilities to:  (a) the number of assembled robots, (b) the shape with which robots are assem-
bled together, and (c) the use of flexible rather than rigid links. Moreover, evolved robots also 
display an ability to:  (a) spontaneously produce a collective obstacle avoidance behaviour, 
(b) dynamically rearrange the physical shape of the team in interaction with the environment 
to negotiate narrow passages, (c) spontaneously produce a coordinate object pushing/pulling 
behaviour when assembled to or around an external object.   

 
 

 
 

Figure 6. A circular shape structure formed by eight robots assembled through flexible links in a maze with ob-
stacles consisting of walls and cylindrical objects (represented with grey lines and circles). The team of robots 
starts in the central portion of the maze and reach the light target located in the bottom-left side of the environ-
ment (see the light grey circle) by exhibiting a combination of collective obstacle avoidance and collective light 
approaching behaviour. The irregular lines, that indicate the trajectories of the single robots, provide an indica-
tion of how the shape of the assembled robots changes during motion by adapting to the local structure of the 
environment. 

Figure 6, that shows the behaviour displayed by eight robots assembled into a circular 
shape through flexible links (i.e. links that allow two connected robots to modify their relative 
positions with limits) placed in a maze environment with walls and cylindrical obstacles, 
demonstrates how the same control system evolved to control four robots assembled into a 
linear structure generalize to: (1) a team consisting of eight robots forming a different shape, 
(2)  robots assembled through flexible links that modify the shape of the assembled structure 
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during motion. The figure also show how robots: (a) produce a collective obstacle avoidance 
behaviour (as a result of the traction force generated during collisions with obstacles), and (b) 
rearrange the shape of the team to pass narrow passages. 

Figure 7, that shows the behaviour of how 8 robots assembled through flexible links 
around a cylindrical object, demonstrates how the same control system evolved to control 
four robots assembled into a linear structure generalizes in new conditions and display a co-
ordinate object pushing-pulling behaviour. 
 

  
 
Figure 7: Left: Eight robots connected around an object. Right: Coordinated object pushing/pulling behaviour 
exhibited by a team of robots assembled around an external cylindrical object. The empty circles and the full 
circle indicate the final positions of the robots and of the object, respectively.  The thin lines and thick line indi-
cate the trajectory of the robots and of the object.   
 
For a demonstration of how the neural controller evolved in simulation are able to display 
similar behaviours when embodied and tested in the real physical robots see (Baldassarre, 
Trianni, Dorigo & Nolfi, in preparation).  
 
4. Behaviour as dynamical system organized hierarchically 
 
In the introduction we pointed out that behaviour is a dynamical process emerging from the 
interactions between agents’ control systems, agents’ body, and the external environment 
(eventually including the social environment). The fact that behaviour (even in simple cases 
such us grasping an object or reaching a target location) is a property that can be observed 
only at macro time scale (in the range of seconds or minutes) while interactions occur at mi-
cro time scales (milliseconds) imply that behaviour emerge from a large number of non-linear 
interactions not only in the case of collective behaviour but also in the case of individual be-
haviour. Behaviour is always the result of a sequence of fine-grained interactions (distributed 
in time) and eventually of a number of sequential concurrent interactions, occurring between 
different concurrent sensory-motor processes or between different agents (distributed in 
space). Overall this imply that individual behaviour and not only collective behaviour is the 
emergent result of a large number of fine-grained interactions. Although this fact is widely 
recognized in the case of collective behaviour, it is much less recognized in the case of indi-
vidual behaviour. 

The picture is further complicated by the fact that behaviour might be based on a series of 
emergent dynamical processes, hierarchically organized, that affect each others bottom-up 
and top-down (for a similar view, see Keijzer F., 2001). More precisely: (a) interactions be-
tween properties emerging from a sequence of fine-grained interactions might lead to higher 
level emergent properties (that typically extend over larger time scales than the interacting 
properties), (b) higher level properties might affect the interactions between lower level prop-
erties. 
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As an example of a top-down effects of high level properties (emerging from the interac-
tion between the agent and the environment) and the interaction between the agent and the 
environment consider the example of the discrimination behaviour described in section 2. The 
behavioural properties emerging from the interactions between the agent control system, its 
body, and the external object (occurring at a time scale of 100ms) result in two different 
emerging behaviours (in the case of cubic or spherical objects respectively): (1) the finger 
remains bended and keeps touching the object, or (2) the finger becomes fully extended by 
passing over the object. These two emergent properties occur at a time scale of seconds while 
the interaction between the agent and the environment are mediated by control rules that op-
erate at the time scale of milliseconds.. These two high level properties, in turns, affect the 
lower level interactions mediated by the agent neural controller (i.e. the neural controller pro-
duces a categorization output corresponding to “cubic object” or “spherical object” on the ba-
sis of the state of the sensors that detect the current angular position of the joints of the fin-
ger). 

As an example of behaviours organized in three hierarchical levels and in which level 3 
properties emerge from the interaction between level 2 properties, that in turn emerge from 
the interaction between the agent and the environment, consider the case of the collective 
navigation problem described in section 3. Interactions occurring between the agents and with 
the environment (at a time scale of 100ms) lead to two behavioural properties (that extend at a 
time scale of seconds): (1) an ability to negotiate and converge on a common direction of 
movement, and (2) an ability to turn toward the light. The interactions between these two high 
level properties, in turn, lead to several collective behaviours that occur at larger time scales 
(i.e. several seconds). More precisely, the interaction between these two behavioural capacity 
lead to: (a) an ability to collectively approach the light target (even when only few agents de-
tect the light because of their relative distance with respect to the light or because of shad-
ows), (b) an ability to display a collective exploration behaviour and a collective light ap-
proaching behaviour and an ability to combine the two behaviours by avoiding to get stuck in 
situations in which these two behavioural capacity, by triggering opposite motor responses, 
might interfere one with the other. 

 
5. Conclusion 
 
In this paper we pointed out the complex system and adaptive nature of behaviour.  

The complex system nature of behaviour derives from the fact that (both in the case of 
individual and collective behaviour) behaviour and behavioural properties are phenomena that 
occur at a given time scale and result from several non-linear interactions occurring at a 
smaller time scale. Interactions occur in time (i.e. consists of a sequence events in which fu-
ture interactions are constrained by preceding interactions) and might eventually consists of a 
vector of concurrent interactions. Moreover we argued that behaviour might involve several 
emergent dynamical processes, hierarchically organized, that affect each others bottom-up 
and top-down. 

 The adaptive system nature of behaviour derives from the fact that, due to the very indi-
rect relationship between the properties of the interacting elements and the emergent results 
of the interactions, behavioural system can hardly be designed while can be effectively syn-
thesized on the basis of a self-organization process (in which properties emerging from 
interactions can be discovered and retained through an adaptive process based on exploration 
and selection). 

These two claims have been demonstrated in two examples in which non-trivial individ-
ual and collective behaviour have been synthesized through an evolutionary technique. 
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